

REVIEW OF SOUTH AFRICA'S APPLIANCE ENERGY CLASSES AND IDENTIFICATION OF THE NEXT SET OF ELECTRICAL EQUIPMENT FOR INCLUSION IN THE NATIONAL STANDARDS AND LABELLING PROJECT: NEW ELECTRICAL APPLIANCES

Distribution Transformers Industry Stakeholder Workshop

4 April 2019

Agenda

- 1. Policy tools considered
- 2. Scope of work and boundaries
- 3. Screening process
- 4. Methodology
- 5. International MEPS trends
- 6. SA analysis
- 7. Recommendations
- 8. Open discussion

1. Policy tools considered

Energy labelling and MEPS

Policy options to improve energy efficiency

- Two main policy options considered are energy labelling and Minimum Energy Performance Standards (MEPS)
- These are typically enacted through government legislation and regulations
- When is labelling most effective?
 - When consumers purchase products and pay the energy bills
 - When products are on display at purchase and can be compared
 - Where there is a wide range of energy efficiency on the market
- Labelling creates market pull to encourage suppliers to offer more efficient products to the market

Policy options to improve energy efficiency

- When is MEPS most effective?
 - When product purchasers do not pay energy bills (can be different parts of a company, landlord and tenant)
 - When products are not on display for sale (purchased on specifications or from catalogues)
 - When there is a significant range of efficiency available (internationally) but this is not always present on the local market
- MEPS is a market push to ensure that all products offered for sale meet a minimum efficiency level

2. Scope of work and boundaries

Study objectives (as per TOR)

- To <u>identify a new set of electrical equipment (residential or commercial)</u> to which compulsory minimum energy efficiency MEPS and/or labelling could be introduced
- To <u>recommend timelines for implementation</u> of improved and new minimum energy performance levels for the next set of electrical equipment
- 3. To <u>conduct an impact assessment analysis</u> of the proposed mandatory requirements for each appliance on <u>consumers</u>, <u>retailers</u>, <u>South African manufacturers</u>, and <u>importers</u>
- 4. To <u>quantify the potential energy and greenhouse gas</u> <u>emission savings</u> that could be achieved through new MEPS and/or labelling over a 10 and 30-year period

Project Scope (UNDP and DOE)

1. Purpose:

 Identify new electrical appliances that could be considered for a Standards & Labelling Programme

2. Key considerations:

- 4-10 products (residential and commercial)
- Must include distribution transformers
- Main goal reduce electricity usage and GHG emissions

3. Approach:

3. Screening

Screening process

All lights, appliances

- List all lights and appliances products
- MEPS and labelling in 75 countries

0. Scope

- Boundaries Remove products out of scope
- Products covered by MEPS in SA already
- Remove any non-electric products

1. MEPS elsewhere

- Globally regulated products
- At least two countries/economic blocks
- EU MEPS/Ecodesign counted as one

2. Energy Savings

- Likely future energy savings from new MEPS
- Efficiency range, sales, usage levels and power
- Relative significant future potential energy savings

3. Ease of adoption

- Check for adoption, implementation and operation issues
- Relevant test procedures in place, ideally SAN (or IEC, ISO)
- MVE issues, especially any verification issues

4. Other barriers

- SA appropriate technical or other barriers
- Technologies, increased purchase costs, rate of market change, local manufacturing impacts

96

72

24

9

Shortlisted electric equipment

Household appliances

Chiller systems

None

Office equipment and electronics

Computers
Televisions
External Power Supplies

Motors - 3 Phase
Pool Pumps
Refrigerators – Commercial
Distribution Transformers

Note: Large ACs (>7.1kW) to be covered in a separate study

4. Methodology

Methodology

Data sources:

- In-house developed database of electric appliances (web crawling, brochures, etc.)
- Interviews with the industry representatives

Approach:

Development of product database Interviews with industry representatives

Analysis of MEPS in other countries
Product testing requirements
Identifying MEPS for consideration in S.A.

Country related impacts
Consumer-specific impacts

Recommendations

Implementation plan

Data sources

- Who owns whom (WOW) 2017 Report
- International MEPS programs covered
- Stakeholder engagement
- Information from Eskom

Field data collection

In-house product database:

- 17 Suppliers
- 178 DT models
 - Supplier type
 - Type, rating, phase, rated power
 - Dimensions, mass
 - Oil volume
 - No loss, full load loss

5. International MEPS trends

Product scope

3-phase distribution transformer

Single phase distribution transformer

Oil and dry type

Product Overview

- Huge numbers globally, very long lifetime (40+ years)
- Are integral to all electricity systems
- Focus on systems with high side voltage input of 6kV to 36kV
- Small differences in efficiency, large savings as in continuous operation, average efficiency already quite high ~98%
- Some differences in efficiency depending on type and phase

Typical losses vs loading for transformers

International Review of MEPS for transformers

- EU and 10 other countries have MEPS
- Different test methods, but most regions now use IEC60076
- US method is equivalent, but slightly different
- Several possible approaches to efficiency for MEPS:
 - Separately limit core losses plus coil losses at defined load OR
 - Separately limit no load losses and losses at rated capacity
 - Limit efficiency at 50% rated capacity (most common efficiency metric used, closest to typical operation)
 - Can also define a minimum value for peak efficiency (typically occurs at 30% to 40% loading)
- Efficiency metrics are complex due to influence of type, phase and frequency
- SEAD have done a lot of work defining global efficiency metrics and levels, so the hard work is done

kVA Rating

Celebrate Development Diversity

6. SA Analysis

Market Overview

- Transformer specifications found in SA:
 - Oil and dry types
 - Typical rated power range: 16 kVA to 5,000 kVA
 - Customised transformers also available (>5,000kVA)
 - Weight range: 150 kg to 29 t
 - Mounting: pole, pad and ground
- Local presence: Actom, WEG, Powertech, ABB, and Siemens
- It is a designated product and utilities are required to purchase locally produced products

DT transformers classes

Impact Analysis – Assumptions

- Annual transformer sales 67,200 (ESKOM estimate)
- Share by type (based on database):
 - 80% oil type
 - 20% dry type
- Efficiency varies by size, voltage, type and phase so the most common sizes across for both single phase and three phase products were selected to model the energy impact
- Sales share per category based on Eskom buying patterns
- A uniform loading profile was assumed for all products
- Efficiency tiers by type are derived from SEAD Distribution
 Transformer Report Part 3 (Super Efficient Appliance Deployment under the Clean Energy Ministerial of G20)

Impact Analysis – Assumptions

- Representative sizes and types selected to undertake impact analysis
- All product sales are allocated to one of these categories

Category	kVA	Sales share	Loading	Year hours	Efficiency at 50%			
					Tier 0	Tier 1	Tier 2	Tier 3
Single phase	16	18%	50%	8760	97.54%	97.92%	98.29%	98.54%
Single phase	32	16%	50%	8760	97.92%	98.24%	98.55%	98.76%
Single phase	64	4%	50%	8760	98.24%	98.51%	98.77%	98.95%
Three phase	25	13%	50%	8760	97.67%	98.00%	98.33%	98.57%
Three phase	50	19%	50%	8760	98.01%	98.29%	98.58%	98.78%
Three phase	100	22%	50%	8760	98.31%	98.55%	98.79%	98.96%
Three phase	200	7%	50%	8760	98.56%	98.76%	98.97%	99.11%
Three phase	315	1%	50%	8760	98.70%	98.88%	99.07%	99.20%
Three phase	500	1%	50%	8760	98.83%	99.00%	99.16%	99.28%

Impact Analysis – Energy Savings

$$Per\ annum\ energy = \left(\frac{Rated_{kVA} * Loading}{Efficiency}\right) * Year_{hours}$$

		Typical kW	/h/per year	MEPS			
Туре	Tier 0	Tier 1	Tier 2	Tier 3	Savings kWh/year	Annual sales	Savings GWh/year
	BAU	-	-	MEPS			
Single phase 16kVA	71 845	71 571	71 298	71 120	725	11 827	8.57
Single phase 32kVA	143 136	142 676	142 219	141 919	1 217	10 573	12.87
Single phase 64kVA	285 344	284 570	283 801	283 296	2 048	2 430	4.98
Three phase 25kVA	112 116	111 737	111 360	111 091	1 025	8 857	9.08
Three phase 50kVA	223 442	222 801	222 163	221 707	1 735	12 943	22.46
Three phase 100kVA	445 549	444 463	443 382	442 607	2 941	14 594	42.93
Three phase 200kVA	888 836	886 994	885 160	883 846	4 990	4 822	24.06
Three phase 315kVA	1 397 882	1 395 277	1 392 682	1 390 823	7 058	598	4.22
Three phase 500kVA	2 215 914	2 212 208	2 208 513	2 205 867	10 047	556	5.59
Total						67 200	135

 Adopting Tier 3 MEPS for South Africa could yield estimated annual total energy savings of around 135 GWh from a base of Tier 0

7. Recommendations

Recommendations for transformers

- Recommended scope for MEPS in South Africa
 - Input voltage from 11 kV to 33 kV (high side) – Class 0 and 1
 - Oil filled:
 - three phase from 25 kVA to 2500 kVA
 - single phase from 10 kVA to 200 kVA
 - Dry type:
 - three phase from 25 kVA to 2500 kVA
 - single phase from 10 kVA to 200 kVA

SEAD MEPS levels – 3 phase oil filled 50Hz

Recommendations for transformers

- Recommended MEPS levels for South Africa
 - SEAD Tier 1 by 2020 (lower efficiency)
 - SEAD Tier 2 by 2022 (moderate efficiency)
 - SEAD Tier 3 by 2030 (high efficiency)
- Will bring South Africa in line with best practice
- These are specified in IEC60076-20
- Alternative implementing strategy:
 - Include equivalent MEPS in SABS 780 (quick-win)
 - Make provision for dry type

Three phased oil filled - MEPS tiers

Three phased dry – MEPS tiers

8. Discussion

Thank you

Elena Broughton

E-mail: elena@urban-econ.com

Tel: +27 12 342 8687

Website: www.urban-econ.com

